Actions of Certain Arithmetic Groups on Gromov Hyperbolic Spaces
نویسندگان
چکیده
We study the variety of actions of a fixed (Chevalley) group on arbitrary geodesic, Gromov hyperbolic spaces. In high rank we obtain a complete classification. In rank one, we obtain some partial results and give a conjectural picture.
منابع مشابه
Novikov Conjectures and Relative Hyperbolicity
We consider a class of relatively hyperbolic groups in the sense of Gromov and use an argument modeled after Carlsson–Pedersen to prove Novikov conjectures for these groups. This proof is related to [16, 17] which dealt with arithmetic lattices in rank one symmetric spaces and some other arithmetic groups of higher rank. Here we view the rank one lattices in this different larger context of rel...
متن کاملOrbit Spaces Arising from Isometric Actions on Hyperbolic Spaces
Let be a differentiable action of a Lie group on a differentiable manifold and consider the orbit space with the quotient topology. Dimension of is called the cohomogeneity of the action of on . If is a differentiable manifold of cohomogeneity one under the action of a compact and connected Lie group, then the orbit space is homeomorphic to one of the spaces , , or . In this paper we suppo...
متن کاملA tale of two groups: arithmetic groups and mapping class groups
In this chapter, we discuss similarities, differences and interaction between two natural and important classes of groups: arithmetic subgroups Γ of Lie groups G and mapping class groups Modg,n of surfaces of genus g with n punctures. We also mention similar properties and problems for related groups such as outer automorphism groups Out(Fn), Coxeter groups and hyperbolic groups. Since groups a...
متن کاملBoundary amenability of hyperbolic spaces
It is well-known that a Kleinian group is amenable if and only if it is elementary. We establish an analogous property for equivalence relations and foliations with Gromov hyperbolic leaves: they are amenable if and only if they are elementary in the sense that one can assign (in a measurable way) to any leaf a finite subset of its hyperbolic boundary (as in the group case, such subsets cannot ...
متن کاملDetours and Gromov hyperbolicity
The notion of Gromov hyperbolicity was introduced by Gromov in the setting of geometric group theory [G1], [G2], but has played an increasing role in analysis on general metric spaces [BHK], [BS], [BBo], [BBu], and extendability of Lipschitz mappings [L]. In this theory, it is often additionally assumed that the hyperbolic metric space is proper and geodesic (meaning that closed balls are compa...
متن کامل